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Ş. İLKER BİRBİL5
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Abstract. By using a smooth entropy function to approximate the non-smooth max-type
function, a vertical linear complementarity problem (VLCP) can be treated as a family of
parameterized smooth equations. A Newton-type method with a testing procedure is pro-
posed to solve such a system. We show that under some milder than usual assumptions the
proposed algorithm finds an exact solution of VLCP in a finite number of iterations. Some
computational results are included to illustrate the potential of this approach.
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1. Introduction

Let Rn be the space of n-dimensional real column vectors and Rm×n the
space of m×n real matrices. We define an index set I :={1,2, . . . , n}. Given
Ni ∈Rmi×n, qi ∈Rmi , and si ∈Rmi , with m=∑n

i=1 mi �n, define
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N :=

⎛

⎜
⎜
⎜
⎝

N1

N2

...

Nn

⎞

⎟
⎟
⎟
⎠

∈Rm×n, q :=

⎛

⎜
⎜
⎜
⎝

q1

q2

...

qn

⎞

⎟
⎟
⎟
⎠

∈Rm, and s :=

⎛

⎜
⎜
⎜
⎝

s1

s2

...

sn

⎞

⎟
⎟
⎟
⎠

∈Rm.

We say N is a vertical block matrix of type (m1, . . . ,mn). The vertical
linear complementarity problem (VLCP) associated with N and q is to find
a pair of vectors x ∈Rn and s ∈Rm such that

x �0, si =Nix +qi �0, and xi

mi∏

j=1

si
j =0 ∀i ∈I, (1)

where xi and si
j denote the ith component of x and the j th component of

si , respectively. This problem was first introduced by Cottle and Dantzig
in name of the generalized linear complementarity problem [5], since when
mi = 1 for all i ∈ I, the problem reduces to an ordinary linear comple-
mentarity problem [6]. VLCP has various applications in non-linear net-
works [14], game theory [17], control theory [35] and economics [9]. Good
references can be found in [8,16,27,28,30–32,36].

Ebiefung [8] showed that VLCP is equivalent to a non-linear complemen-
tarity problem NCP(F ) with F = (F1, . . . , Fn)

T and Fj , j = 1, . . . , n, being
piecewise linear and concave. It can also be shown that VLCP is equivalent
to a system of piecewise linear equations, or a multi-objective program. By
extending Lemke’s pivoting algorithm, Cottle and Dantzig proposed the first
algorithm for VLCP [5]. An interior point method for solving extended ver-
tical linear complementarity problems can be found in [38]. Peng and Lin
[30] proposed a non-interior continuation method for solving VLCP. Qi and
Liao [31] proposed a smoothing Newton method for extended VLCP.

In this paper, we are interested in developing a non-interior continua-
tion method for solving VLCP with finite termination. Our approach is
based on the entropic smoothing for the max-type function. Let gi:Rn →R,

∀i ∈I, be differentiable and define a max-type function g:Rn →R by

g(x) :=max
i∈I

gi(x).

Although the function g is piecewise smooth and locally Lipschitz con-
tinuous, it is not differentiable. Given any µ > 0, consider the following
entropy-type function as a smoothing approximation function of g,

g(x,µ) :=µ ln
n∑

i=1

exp(gi(x)/µ). (2)

Note that, for µ>0,
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g(x,µ)=g(x)+µ ln
n∑

i=1

exp
(

gi(x)−g(x)

µ

)

. (3)

Moreover,

g(x)�g(x,µ)�g(x)+µ ln(n) ∀x ∈Rn and µ>0. (4)

Therefore, g(x,µ) → g(x) as µ → 0. This fact allows us to develop iter-
ative methods based on g(x,µ) to solve the problem without facing the
non-differentiability problem of g(x). The function (2) was introduced by
Kort and Bertsekas [24] as a penalty function for constrained minimiza-
tion. Goldstein [15] studied this function intensively and attributed the
basic approximation formula (4) to his former student Chang [3]. Since the
function (2) can be derived from the dual problem of an entropy optimi-
zation problem [12], we call function (2) an entropic smoothing approxi-
mation function. Independently, Li [25] discovered a few properties of this
function and named it as the aggregate function. Related work can be
found in [1,3,11,15,26,30–32,41]. Also note that since a lower bound of
the value of g(x) is singled out in the representation (3), it can be used
in computation to avoid the potential overflow problem arising from any
exponential function evaluation in (2).

The finite termination of iterative methods is an interesting and impor-
tant research topic. This property has been investigated for various cases
including the interior point methods [23,29,42], non-smooth Newton meth-
ods [13,22,37], and non-interior continuation methods [4,7]. It is our
objective to develop a Newton-type method based on the entropic smooth-
ing function for solving VLCP in a finite number of iterations.

It is well-known that many non-interior continuation methods need to
use the non-singularity assumption and the strict complementarity assump-
tion to obtain the local superlinear convergence of the methods [2,19,20,
30,33]. The two assumptions mean that:

– Non-singularity assumption, i.e., the Jacobian matrix involved in
Newton equation is non-singular at the solution point, or the iteration
matrices are uniformly non-singular.

– Strict complementarity assumption, i.e., the solution of the problem con-
cerned is strictly complementary.

The non-singularity assumption has recently been relaxed in a few
non-interior continuation methods [10,21,40]. However, in order to achieve
finite termination for non-interior continuation methods, this assumption
has been commonly adopted, for example, see [4,7,13,37]. In this paper, by
using the entropic approximation function, we present a non-interior con-
tinuation method for solving VLCP, in which a test procedure of finding a
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solution point in the optimal face of the problem is embedded into each
iteration. We show that for N being a vertical block P0 and R0 matrix, if
either (i) the strict complementarity condition holds, or (ii) the solution set
of (1) is a singleton, then the proposed algorithm finds an exact solution
to VLCP in a finite number of iterations. It should be noted that the com-
monly used non-singularity assumption implies that the solution set of the
underlying problem is a singleton. Therefore, the hypothesis used in this
paper is weaker.

The paper is organized as follows. Some basic concepts and properties
for VLCP are introduced in Section 2. Then we present in Section 3 a non-
interior continuation method based on the entropic approximation function
for solving VLCP. In Section 4, we show the finite termination property of
the proposed algorithm. Some numerical results are presented in Section 5.

2. Basic concepts and properties

A square matrix M ∈Rn×n is said to be a P0-matrix, if for all non-zero vec-
tor x ∈Rn, there exists a component xi �=0 such that xi(Mx)i � 0. For the
vertical block matrix N of type (m1, . . . ,mn), a square submatrix of N of
order n is said to be a representative submatrix, if its ith row is drawn from
the ith block Ni of N for each i ∈I. The following definition is from [28]:

DEFINITION 2.1. Let N ∈ Rm×n be a vertical block matrix of type
(m1, . . . ,mn). N is called a vertical block P0-matrix, if all its representa-
tive submatrices are P0-matrices. Moreover, N is called a vertical block
R0-matrix, if

⎛

⎜
⎝

min
{
x1,N

1
1 x, . . . ,N1

m1
x
}

...

min
{
xn,N

1
nx, . . . ,Nn

mn
x
}

⎞

⎟
⎠=0 ⇐⇒ x =0,

where Ni
j denotes the j th row of ith block.

For a VLCP with given N and q, it is obviously equivalent to the
following piecewise smooth equations:

H(x) :=

⎛

⎜
⎝

min
{
x1,N

1
1 x +q1

1 , . . . ,N1
m1

x +q1
m1

}

...

min
{
xn,N

n
1 x +qn

1 , . . . ,Nn
mn

x +qn
mn

}

⎞

⎟
⎠

=−

⎛

⎜
⎝

max
{−x1,−

(
N1

1 x +q1
1

)
, . . . ,− (N1

m1
x +q1

m1

)}

...

max
{−xn,−

(
Nn

1 x +qn
1

)
, . . . ,− (Nn

mn
x +qn

mn

)}

⎞

⎟
⎠=0. (5)
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Let F be the feasible solution set of VLCP, i.e.,

F ={(x, s)∈Rn ×Rm : s =Nx +q �0 and x �0}.
Also let S denote the solution set of VLCP, i.e.,

S ={(x, s)∈Rn ×Rm: (x, s) satisfies (1)}.
Then we know that

(x, s)∈S if and only if x solves H(x)=0 and s =Nx +q. (6)

We also call S1 := {x ∈ Rn : H(x) = 0} to be the solution set of VLCP.
By applying the entropic approximation to H(x), we can define a smooth
function, for any µ > 0,

H(x,µ) :=−

⎛

⎜
⎜
⎜
⎝

µ ln
(

exp(−x1/µ)+∑m1
j=1 exp

(
−
(
N1

j x +q1
j

)
/µ
))

...

µ ln
(

exp(−xn/µ)+∑mn

j=1 exp
(
−
(
Nn

j x +qn
j

)
/µ
))

⎞

⎟
⎟
⎟
⎠

.

(7)

Consequently, H(x,µ) → H(x) as µ → 0. This fact and (6) indicate
that one can solve VLCP by taking the following steps: (i) start with a
µ > 0 and approximate VLCP by the parameterized smooth equations
H(x,µ)=0 and s = Nx + q, (ii) solve H(x,µ) = 0 and maintain s =
Nx +q at each iteration, and (iii) refine the approximation by reducing the
parameter µ to zero. Since it is usually very difficult to solve H(x,µ) = 0
in an exact manner, for µ > 0, like in other interior point and non-interior
continuation methods, we use the following definition of neighborhood:

N (β,µ) :={x ∈Rn :‖H(x,µ)‖�βµ}, (8)

for β > 0 and µ > 0.
The following lemma whose proof can be found in [30,31] summarizes

some basic properties of the functions H(x) and H(x,µ).

LEMMA 2.1. Suppose that N ∈ Rm×n is a vertical block matrix of type
(m1, . . . ,mn). Let H(x) and H(x,µ) be defined by (5) and (7), respectively.
Then

(i) For each i ∈ I,−Hi(x,µ) is convex and monotonically increasing with
respect to µ > 0 and

−Hi(x)�−Hi(x,µ)�−Hi(x)+µ ln(mi +1),

where Hi(x) is the ith component of H(x) as defined in (5).



374 SHU-CHERNG FANG ET AL.

(ii) If N is a vertical block P0-matrix, then, for any µ > 0, −Hi(x,µ) is
an infinite order differentiable convex function with respect to x ∈ Rn, and
∇xH(x,µ) is non-singular for any x ∈Rn with

∇xH(x,µ)=

⎛

⎜
⎜
⎝

λ1
0(x,µ)eT

1 +∑m1
j=1 λ1

j (x,µ)N1
j

λ2
0(x,µ)eT

2 +∑m2
j=2 λ2

j (x,µ)N2
j

· · ·
λn

0(x,µ)eT
n +∑mn

j=1 λn
j (x,µ)Nn

j

⎞

⎟
⎟
⎠ ,

where ei is the ith column of the n×n identity matrix,

λi
0(x,µ)=

exp
(
− xi

µ

)

exp
(
− xi

µ

)
+∑mi

l=1 exp
(
−Ni

l x+qi
l

µ

)

=
exp

(
−xi+Hi(x)

µ

)

exp
(

−xi+Hi(x)

µ

)
+∑mi

l=1 exp
(−Ni

l x−qi
l +Hi(x)

µ

) , i =1,2, . . . , n,

λi
j (x,µ)=

exp
(
−Ni

j x+qi
j

µ

)

exp
(
− xi

µ

)
+∑mi

l=1 exp
(
−Ni

l x+qi
l

µ

)

=
exp

(
−Ni

j x−qi
j +Hi(x)

µ

)

exp
(

−xi+Hi(x)

µ

)
+∑mi

l=1 exp
(
−Ni

l x−qi
l +Hi(x)

µ

) , i =1,2, . . . , n.

(iii) N is a vertical block R0-matrix if and only if lim‖x‖→∞ ‖H(x)‖/‖x‖�
c0 holds for some constant c0 > 0.

(iv) For any x, y ∈ Rn and µ > 0, there exists a constant c1 > 0 such that

‖H(y,µ)−H(x,µ)−∇xH(x,µ)(y −x)‖�
√

nc1

µ
‖y −x‖2.

(v) For any µ1,µ2 > 0,

‖H(x,µ1)−H(x,µ2)‖�
√

n(ln m̄)|µ1 −µ2|,

where m̄=max{m1, . . . ,mn}+1.
(vi) If N is a vertical block R0-matrix and S1 �= ∅, then there exists a

constant c2 > 0 such that

dist(x,S1) :=min
y∈S1

‖y −x‖� c2‖H(x)‖,

for any x ∈Rn.
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Note that result (i) implies that H(x,µ) → H(x) as µ → 0. Hence, we
define H(x,0) :=H(x) for x ∈Rn.

3. Proposed algorithm

Define an index set J := {(i, j) : i ∈ I, j = 1,2, . . . ,mi}. The j th row Ni
j

of Ni is called the (i, j) row of matrix N . Let K1 ⊆ I and K2 ⊆ J be
two nonempty sets, then xK1 and sK2 denote the vectors obtained from all
components xr in x with r ∈ K1 and all components si

j in s with (i, j) ∈
K2, respectively. Moreover, NK2K1 denotes the submatrix of N induced by
those components of N whose row indices belong to K2 and column indi-
ces belong to K1, respectively. In what follows, k always denotes the itera-
tion number.

ALGORITHM 3.1. Given σ1, σ2 ∈ (0,1), α1, α2 ∈ (0,1), γ ∈ (0,1), p � 1,
µ0 > 0, and x0 ∈ Rn, choose β > 0 such that ‖H(x0,µ0)‖ � βµ0. Set s0 :=
Nx0 + q, k :=0.

Step 1. If H(xk)=0, then stop (output xk as a solution).
Step 2. If µk >γ , then go to Step 3; otherwise, define four sets

A :={i ∈I :xk
i >

√
µk

}
, C :={i ∈I :xk

i �√
µk

}
,

B :=
{
(i, j)∈J : (sk)ij >

√
µk
}

, D :=
{
(i, j)∈J : (sk)ij �

√
µk
}

.

(9)

If one of the following four cases occurs, then stop (output xk+1

as a solution); otherwise, go to Step 3.

Case (i) If A �= ∅,B �= ∅ and for any i ∈ A there exists at least
one index (i, j) ∈ J such that (sk)ij � √

µk, then solve
the following system of equations:

(
sk
B +�Sk

B

0

)

=
(

NBA NBC

NDA NDC

)(
xK

A +�xK
A

0

)

+
(

qB

qD

)

.

(10)

If there exists a solution (�xk
A,�sk

B) such that xk
A +

�xk
A � 0 and sk

B + �sk
B � 0, then set

xk+1
i :=

{
xk

i +�xk
i if i ∈A

0 otherwise
,

(sk+1)ij :=
{

(sk)ij + (�sk)ij if (i, j)∈B

0 otherwise
.
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Case (ii) If A �= ∅ and B =∅, then solve the following system of
equations:

0= (NDA,NDC)

(
xk

A +�xk
A

0

)

+qD.

If there exists a solution �xk
A such that xk

A + �xk
A � 0,

then set

xk+1
i :=

{
xk

i +�xk
i if i ∈A

0 otherwise
, sk+1 :=0.

Case (iii) If A = ∅, B �= ∅ and qB > 0, qD = 0, then set

xk+1 :=0, (sk+1)ij :=
{

qi
j if (i, j)∈B

0 otherwise
.

Case (iv) If A = ∅, B = ∅ and qD = 0, then set xk+1 :=0, sk+1 :=0.

Step 3. Find a Newton direction �xk by solving ∇xH(xk,µk)�xk

= −H(xk,µk). Let θk be the maximum value of the set
{1, α1, α

2
1, . . . } such that

‖H(xk + θk�xk,µk)‖� (1−σ1θk)βµk.

Set xk+1 :=xk + θk�xk. Moreover, let λk be the maximum value of
the set

{
max

{
1, 1

σ2

(
1−µ

p

k

)}
, α2, α

2
2, . . .

}
such that

xk + θk�xk ∈N (β, (1−σ2λk)µk).

Set µk+1 := (1−σ2λk)µk.

Step 4. Set sk+1 :=Nxk+1 +q and k :=k +1. Go to Step 1.

Note that since the Jacobian matrix ∇xH(x,µ) in Step 3 is guaranteed to
be non-singular for any µ > 0 and x ∈ Rn by the result (ii) of Lemma 2.1,
it is not difficult to see that Algorithm 3.1 is well-defined. The initial value
of parameter p (�1) can be selected to be a suitable positive integer. The
parameter γ in Step 2 is used to control the quality of final solution. In the
next section (see Lemma 4.4), we show that the four index sets (9) in Step
2 actually coincide with the index sets of a solution to VLCP as k becomes
sufficiently large.
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THEOREM 3.1. If Algorithm 3.1 terminates in either Step 1 or Step 2 for
some k � 0, then (xk, sk) or (xk+1, sk+1) is a solution to VLCP, respectively.

Proof. If Algorithm 3.1 terminates in Step 1, that is,

H(xk)=0 (11)

for some k �0. From the algorithm, it is easy to see that

sk =Nxk +q (12)

for all k � 0. From (6), (11) and (12), it follows that (xk, sk) is a solution
to VLCP.

If one stopping criterion in Step 2 is met: since A and C form a partition
of I, and B and D form a partition of J , it is not difficult to check from
cases (i)–(iv) that xk+1 and sk+1 satisfy the non-negativity condition, feasi-
bility condition, and complementarity condition of the system (1). Conse-
quently, (xk+1, sk+1) is a solution to VLCP.

A non-interior continuation method in general generates a sequence of
infinitely many iterations. In this case, only an approximate solution is gen-
erated. But if the proposed algorithm terminates in either Step 1 or Step 2
for some k � 0, then Theorem 3.1 guarantees an exact solution to VLCP.

4. Finite termination

In this section we show that, under some milder than usual conditions, the
stopping criteria in Step 2 of the proposed algorithm must be met as k

becomes sufficiently large. This implies that the proposed algorithm termi-
nates in a finite number of iterations.

THEOREM 4.2. Let N be a vertical block P0 and R0 matrix of type
(m1, . . . ,mn) and {(xk, sk,µk)} be the sequence generated by Algorithm 3.1.
If H(xk) �=0 for k =0,1,2, . . . , then

(i) {(xk, sk,µk)} is a bounded infinite sequence,
(ii) each accumulation point of the sequence {(xk, sk)} is a solution to

VLCP.

Proof.
(i) If H(xk) �= 0 for all k � 0, then the proposed algorithm will not

terminate at Step 2. Otherwise, if the algorithm terminates at Step 2 in
k0 � 0 iterations, then from Theorem 3.1, we know that (xk0+1, sk0+1) ∈
S, and hence H(xk0+1) = 0. Therefore an infinite sequence {(xk, sk,µk)} is
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generated. From the algorithm itself, it is not difficult to see that sk =
Nxk +q and xk ∈N (β,µk) for k = 0,1,2, . . . . Now, for any xk ∈N (β,µk),
the result (i) of Lemma 2.1 implies that

‖H(xk)‖�‖H(xk)−H(xk,µk)‖+‖H(xk,µk)‖� (
√

n ln m̄+β)µ0,

where m̄ = max{m1, . . . ,mn} + 1. This inequality and the result (iii) of
Lemma 2.1 further imply that {xk} is bounded. Consequently, {sk} is
bounded because sk = Nxk + q. Note that {µk} obtained in Step 3 is
a monotonically decreasing non-negative sequence. Hence the sequence
{(xk, sk,µk)} is bounded.

(ii) Since the infinite sequence {(xk, sk,µk)} is bounded, there exists a
convergent subsequence. We may assume without loss of generality that
limk→∞(xk, sk,µk)= (x∗, s∗,µ∗). Because sk = Nxk + q holds for all k � 0,
we have

s∗ =Nx∗ +q. (13)

Noting that {µk} is a monotonically decreasing non-negative sequence,
we know µ∗ � 0. If µ∗ = 0, the result (i) of Lemma 2.1 implies that
H(x∗) = H(x∗,µ∗). Moreover, xk ∈ N (β,µk) implies that x∗ ∈ N (β,µ∗).
Hence ‖H(x∗,µ∗)‖ = 0 and H(x∗) = 0. Together with (13), we know that
(x∗, s∗)∈S, and the desired result follows. We now show that µ∗ > 0 will
not occur. Assume that µ∗ > 0, then the result (ii) of Lemma 2.1 implies
that ∇xH(xk,µk) is non-singular and its norm is uniformly bounded below
by a positive constant for all k � 0. In other words, there exists a constant
c3 > 0 such that ‖∇xH(xk,µk)]−1‖ � c3. By Step 3 of the proposed algo-
rithm, we have

‖�xk‖=‖[∇xH(xk,µk)]−1H(xk,µk)‖
� c3‖H(xk,µk)‖� c3βµk for k �0. (14)

For α ∈ (0,1), define

rk(α) :=H(xk +α�xk,µk)−H(xk,µk)−α∇xH(xk,µk)�xk. (15)

It follows from the result (iv) of Lemma 2.1 and (14) that

‖rk(α)‖�
√

nα2c1

µk

‖�xk‖2 �
√

nα2c1c
2
3β‖H(xk,µk)‖.

If we let ᾱ =min
{

1−σ1√
nβc1c

2
3
,1
}

, then

‖rk(α)‖� (1−σ1)α‖H(xk,µk)‖ for any α ∈ (0, ᾱ). (16)
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Combining (15) and (16), we see

‖H(xk +α�xk,µk)‖− (1−σ1α)‖H(xk,µk)‖
� (1−α)‖H(xk,µk)‖+‖rk(α)‖− (1−σ1α)‖H(xk,µk)‖
= (σ1 −1)α‖H(xk,µk)‖+‖rk(α)‖
�0. (17)

Let l1 be the minimum integer such that α
l1
1 � ᾱ, then θk � α

l1
1 follows from

the algorithm. Hence there exists a constant θ∗ > 0 such that θk � θ∗ for all
k � 0. It follows from (17) that

‖H(xk+1,µk)‖� (1−σ1θk)‖H(xk,µk)‖� (1−σ1θ∗)‖H(xk,µk)‖.
Using the result (v) of Lemma 2.1 and the above inequality, we know that,
for any λ∈ (0,1),

‖H(xk+1, (1−σ2λ)µk)‖
(1−σ2λ)µk

� ‖H(xk+1,µk)‖+√
n(ln m̄)λσ2µk

(1−σ2λ)µk

� (1−σ1θ∗)‖H(xk,µk)‖+√
n(ln m̄)λσ2µk

(1−σ2λ)µk

� (1−σ1θ∗)β +√
n(ln m̄)λσ2

1−σ2λ
.

For (1−σ1θ∗)β+√
n(ln m̄)λσ2

1−σ2λ
� β,λ � λ̄ := σ1θ∗β√

n(ln m̄)σ2+σ2β
. If we let l2 be the mini-

mum integer such that α
l2
2 � min{λ̄,1}, then a similar argument assures that

there exists a constant λ∗ >0 such that λk � λ∗ for any k � 0. In this case,
µk+1 = (1 − σ2λk)µk � (1 − σ2λ∗)µk, which further implies that µk → 0 as
k → ∞. This contradicts the hypothesis of µ∗ > 0.

LEMMA 4.2. Let N be a vertical block P0 and R0 matrix of type
(m1, . . . ,mn). Then the solution set S of VLCP is non-empty and compact.

Proof. Since N be a vertical block P0 and R0 matrix of type (m1, . . . ,mn),
Theorems 3.1 and 4.2 imply that S is non empty. In addition, it is not diffi-
cult to see that S is closed. Thus, it suffices to show that S is bounded. If
not, then there exists an unbounded solution sequence {(xr, sr)}∈S for all
r �0. It follows from (6) that

H(xr)=0 and sr =Nxr +q, for all r �0.

Consequently, limr→∞ ‖H(xr)‖/‖xr‖ = 0. However, the result (iii) of
Lemma 2.1 shows that there exists a constant c0 > 0 such that
limr→∞ ‖H(xr)‖/‖xr‖� c0. This contradicts the hypothesis.
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When N is a vertical block P0 and R0 matrix of type (m1, . . . ,mn), if
H(xk) �=0 for all k�0, the result (i) of Theorem 4.2 says that Algorithm 3.1
generates a bounded infinite sequence {(xk, sk,µk)}. Let {(xk̄, sk̄,µk̄)} be a
convergent subsequence with a limit point (x∗, s∗,µ∗). Then the result (ii)
of Theorem 4.2 says that µ∗ = 0 and (x∗, s∗) ∈ S. By making use of the
sequence {(xk̄, sk̄,µk̄)}, for each k̄ � 0, we define four index sets:

Ak̄ :=
{
i ∈I :xk̄

i >
√

µk̄

}
, Ck̄ :=

{
i ∈I :xk̄

i �√
µk̄

}
,

Bk̄ :=
{
(i, j)∈J : (sk̄)ij >

√
µk̄

}
, Dk̄ :=

{
(i, j)∈J : (sk̄)ij �√

µk̄

}
.

(18)

Clearly, Ak̄ and Ck̄ partition the index set I and Bk̄ and Dk̄ partition the
index set J . In what follows, we discuss the finite termination of Algorithm
3.1 in two cases.

Case 1: Finite Termination under Strict Complementarity

Let (x∗, s∗) be a solution to VLCP, for any i ∈ I, we denote x∗
i by (s∗)i0,

then Hi(x
∗) = min

{
(s∗)i0, (s

∗)i1, . . . , (s∗)imi

}
. Let Ii(x

∗) denote the active set
at x∗ defined by Ii(x

∗) := {j : Hi(x
∗) = (s∗)ij , j = 0,1, . . . ,mi}. Assume that

(x∗, s∗) satisfies the strict complementarity condition, i.e., the cardinality of
Ii(x

∗) is equal to one for all i ∈I. Define

B :={i ∈I :x∗
i =0

}
,

N :=
{
i ∈I :x∗

i >0, (s∗)iji0
=0 for some ji0 and

(s∗)ij >0 for all j �= ji0,1� j �mi

}
.

Since (x∗, s∗) ∈ S satisfies the strict complementarity condition, it follows
that B ∪N = I and B ∩N = ∅.

For any w = (x, s)∈Rn × Rm, let N0 :=
{
j : (s∗)ij =0 with i ∈N

}
and let

sN
N0

denote a vector with ith component being si
ji0

for i ∈ N and ji0 ∈ N0.
Define

G(w) :=
⎛

⎝
s −Nx −q

xB
sN
N0

⎞

⎠ (19)

and

S0 :={w ∈Rn+m :G(w)=0}. (20)

Similar to Lemma 5.1 in [21], we have the following result:
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LEMMA 4.3. Let

ε =min
{

min
i∈N

{

x∗
i , min

1�j�mi,j �=ji0

{
(s∗)ij

}
}

, min
i∈B,1�j�mi

{
(s∗)ij

}
}

and

�={w = (x, s)∈Rn ×Rm : |xi −x∗
i |� ε/3, |si

j − (s∗)ij |
� ε/3, i ∈I, (i, j)∈J }.

Then for any w ∈�∩F there exists a constant λ>0 such that

‖H(x)‖=‖G(w)‖�λ · dist(w,S0), (21)

where H(·) and G(·) are defined by (5) and (19), respectively.

Proof. Denote (x∗, s∗) by w∗. Since G(w∗) = 0,G(w) = 0 is solvable and
S0 �= ∅. By Hoffman’s result on error bound of linear systems [18], there
exists a positive number λ>0 such that for any w ∈Rn+m

‖G(w)‖�λ ·dist(w,S0). (22)

For any w ∈�, if i ∈N , then

xi =x∗
i +xi −x∗

i � ε − 1
3
ε = 2

3
ε,

|si
ji0

|� 1
3
ε,

si
j = (s∗)ij + si

j − (s∗)ij � ε − 1
3
ε = 2

3
ε for 1� j �mi, j �= ji0 .

If i ∈B, then

|xi |� 1
3
ε,

si
j = (s∗)ij + si

j − (s∗)ij � ε − 1
3
ε = 2

3
ε for 1� j �mi.

These imply that for each i ∈I,

min{xi, s
i
1, s

i
2, . . . , si

mi
}=

{
xi, ∀i ∈B
si
ji0

, ∀i ∈N .

Hence,
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‖H(x)‖=‖G(w)‖ for w ∈�∩F . (23)

(21) follows from (23) and (22).

Lemma 4.3 indicates that if w ∈ S0 for w being sufficiently close to w∗,
then w solves (1), i.e., w ∈ S. If we define

S̄0 :=�∩F ∩S0,

then

S̄0 ⊂S,

which implies that S̄0 is bounded by Lemma 4.2. Denote wk̄ := (xk̄, sk̄).
It is not difficult to see that, for each k̄ � 0, there exists a point
wk̄∗ = (xk̄∗

, sk̄∗
)∈ S̄0 such that

‖wk̄ −wk̄∗‖= min
w∈S̄0

‖wk̄ −w‖= dist(wk̄, S̄0). (24)

Note that when k̄ is sufficiently large, the point wk̄∗
is also the projection

of point wk̄ on S0. Therefore, from (21), there exists a constant ρ̄ > 0 such
that

dist(wk̄, S̄0)= dist(wk̄,S0)� ρ̄‖H(xk̄)‖ (25)

for any k̄ being sufficiently large.
Corresponding to the solution point (xk̄∗

, sk̄∗
), we define four index sets:

A∗
k̄

:=
{
i ∈I :xk̄∗

i >0
}

, C∗
k̄

:=
{
i ∈I :xk̄∗

i =0
}

,

B∗
k̄

:=
{
(i, j)∈J : (sk̄∗

)ij >0
}

, D∗
k̄

:=
{
(i, j)∈J : (sk̄∗

)ij =0
}

. (26)

Obviously, A∗
k̄

and C∗
k̄

form a partition of the index set I and B∗
k̄

and D∗
k̄

form a partition of the index set J .
The following lemma presents a special property of the four index sets

defined above.

LEMMA 4.4. Let N be a vertical block P0 and R0 matrix of type
(m1, . . . ,mn) and the index sets Ak̄,Bk̄,Ck̄,Dk̄ and A∗

k̄
, B∗

k̄
, C∗

k̄
,D∗

k̄
be defined

as in (18) and (26), respectively. Assume that the strict complementarity con-
dition holds. If H(xk) �=0 for all k �0, then Ak̄ = A∗

k̄
, Bk̄ = B∗

k̄
, Ck̄ = C∗

k̄
, and

Dk̄ = D∗
k̄
, when k̄ becomes sufficiently large.
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Proof.
(i) We first show that Ak̄ ⊆ A∗

k̄
. For any i0 ∈Ak̄, i.e., xk̄

i0
>

√
µk̄ by using

‖H(xk̄,µk̄)‖ � βµk̄ and the result (i) of Lemma 2.1, we have

|Hi(x
k̄)|� |Hi(x

k̄,µk̄)|+µk̄ ln (mi +1)

� (β + ln (mi +1))µk̄ for i ∈I. (27)

Thus, for any k̄ being sufficiently large,

‖xk̄ −xk̄∗‖�‖wk̄ −wk∗‖=dist(wk̄, S̄0) (by (24))

� p̄||H(xk̄)|| (by (25))

= p̄

√
√
√
√

n∑

i=1

∣
∣Hi(xk̄)

∣
∣2

� c5µk̄, (by (27)) (28)

where c5 := ρ̄(
∑n

i=1[β + ln(mi + 1)]2)1/2. Remembering that xk̄
i0

>
√

µ
k̄
, we

have

xk̄∗
i0

�xk̄
i0

− c5µk̄ >
√

µk̄ − c5µk̄ >0, (29)

where the first inequality follows from (28) and the third inequality from
limk̄→∞ µk̄ =0. Obviously, (29) implies i0 ∈ A∗

k̄
and, consequently, Ak̄ ⊆ A∗

k̄
.

Next we show that A∗
k̄
⊆ Ak̄. For any i0 ∈ A∗

k̄
, i.e., xk̄∗

i0
> 0, from the

proof of Theorem 4.2, we know

lim
k̄→∞

µk̄ =0,

and, by (28),

‖xk̄ −xk̄∗‖→0.

Consequently,

‖xk̄∗ −x∗‖�‖xk̄∗ −xk̄‖+‖xk̄ −x∗‖→0

as k̄ → 0. Since x∗
i0

> 0, by the proof of Lemma 4.3, there is a constant
ξ > 0 such that xk̄∗

i0
� ξ > 0, for k̄ being sufficiently large. Note that µk̄ → 0

as k → ∞. We know xk̄
i0

>
√

µk̄ for k being sufficiently large. This implies
i0 ∈ Ak̄ and hence A∗

k̄
⊆ Ak̄.
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(ii) Since (sk̄)ij =Ni
jx

k̄ +qi
j and (sk̄∗

)ij =Ni
jx

k̄∗ +qi
j , it follows that

∣
∣(sk̄)ij − (sk̄∗

)ij

∣
∣= ∣∣Ni

jx
k̄ −Ni

jx
k̄∗∣∣� ||N || ||xk̄ −xk̄∗ ||� cs ||N ||µk̄.

Thus, similar to the proof of (i), we can show that Bk̄ = B∗
k̄

for k̄ being
sufficiently large.

(iii) From (i), (ii) and

Ak̄ ∪Ck̄ =I =A∗
k̄
∪C∗

k̄
, Ak̄ ∩Ck̄ =∅=A∗

k̄
∩C∗

k̄
,

Bk̄ ∪Dk̄ =J =B∗
k̄
∪C∗

k̄
, Bk̄ ∩Dk̄ =∅=B∗

k̄
∩D∗

k̄
,

it is easy to see that Ck̄ =C∗
k̄

and Dk̄ =D∗
k̄
.

The following result is a direct consequence of Lemma 4.4:

COROLLARY 4.1. In the same setting of Lemma 4.4, there exists a con-
stant c6 > 0 such that, for any k̄ being sufficiently large,

xk̄
i � c6 for all i ∈Ak̄ and (sk̄)ij � c6 for all (i.j)∈Bk̄.

The following lemma characterizes a solution to VLCP in terms of the
index sets. Since the proof is simple, we omit it.

LEMMA 4.5. (xk̄∗
, sk̄∗

)∈S if and only if xk̄∗ � 0, sk̄∗ = Nxk̄∗ + q � 0 and
one of the following conditions is satisfied:

(i) If A∗
k̄

�= ∅, then for any i ∈A∗
k̄

there exists at least one index (i, j)∈J
such that (sk̄∗

)ij = 0. In this case, B∗
k̄

can be either empty or non empty.
(ii) If A∗

k̄
= ∅, then qB∗

k̄
> 0 and qD∗

k̄
= 0 when B∗

k̄
�= ∅, and qD∗

k̄
= 0 when

B∗
k̄

= ∅.

From Theorem 4.2 we have known that Algorithm 3.1 generates a
bounded infinite sequence of iterations, if it does not terminate in either
Step 1 or Step 2. Now we are ready to show the following main result:

THEOREM 4.3. Let N be a vertical block P0 and R0 matrix of type
(ml, . . . ,mn). Assume that the strict complementarity condition holds at an
accumulation point of the sequence of iterations generated by Algorithm 3.1.
Then Algorithm 3.1 terminates with an exact solution to VLCP in a finite
number of iterations.

Proof. Suppose that Algorithm 3.1 does not terminate in a finite num-
ber of generation, but instead generates an infinite sequence {(xk, sk,µk)}.



VERTICAL LINEAR COMPLEMENTARITY PROBLEMS 385

Then we know H(xk) �= 0 for all k � 0 and the stopping criteria in Step
2 are inactive all the time. Otherwise, if H(xk0) = 0 for some k0 � 0, then,
by noting that sk = Nxk + q for all k � 0, we have (xk0, sk0) ∈ S and the
algorithm terminates here. Let (x∗, s∗,µ∗) be an accumulation point of
the sequence of iterations {(xk, sk,µk)} and {(xk̄, sk̄,µk̄)} a convergent sub-
sequence, (xk̄, sk̄,µk̄) → (x∗, s∗,µ∗). Then (x∗, s∗) is a solution to VLCP.
Suppose that (x∗, s∗) is strictly complementary. Let the index sets Ak̄, Bk̄,
Ck̄ and Dk̄ be defined as in (18). Then one of the following three cases will
happen:

(i) Ak̄ �= ∅, Bk̄ �=∅.
(ii) Ak̄ �=∅, Bk̄ =∅.
(iii) Either Ak̄ =∅, Bk̄ �=∅ or Ak̄ =∅=Bk̄.

From Lemmas 4.4 and 4.5, if case (i) happens, then, for any i ∈Ak̄, we have
i ∈ A∗

k̄
, i.e., xk̄∗

i > 0. Since (xk̄∗
, sk̄∗

) ∈ S when k̄ is sufficiently large, there
exists an index (i, j) ∈ J such that (sk̄∗

)ij = 0. Consequently, (i, j) ∈ D∗
k̄

Therefore, (i, j) ∈ Dk̄, i.e., (sk̄)ij � √
µk̄. holds for all k̄ being sufficiently

large.
Suppose that case (i) indeed happens at infinitely many k̄. Since Ak̄,Ck̄

form a partition of the index set I, and Bk̄, Dk̄ form a partition of the
index set J , the equation sk̄ =Nxk̄ +q can be written as

(
sk̄

B̄k

sk̄

D̄k

)

=
(

NB̄kĀk
NB̄kC̄k

ND̄kĀk
ND̄kC̄k

)(
xk̄

Āk

xk̄

C̄k

)

+
(

qB̄k

qD̄k

)

. (30)

Consider the subsequence {(xk̄, Sk̄,µk̄)}, (10) becomes
(

sk̄

B̄k
+�sk̄

B̄k

0

)

=
(

NB̄kĀk
NB̄kC̄k

ND̄kĀk
ND̄kC̄k

)(
xk̄

Āk
+�xk̄

Āk

0

)

+
(

qB̄

qD̄

)

. (31)

Subtracting (30) from (31) yields
(

�sk̄

B̄k

−sk̄

D̄k

)

=
(

NB̄kĀk
NB̄kC̄k

ND̄kĀk
ND̄kC̄k

)(
�xk̄

Āk

−xk̄

C̄k

)

. (32)

Let I and 0 denote the identity matrix and zero matrix with appropriate
dimensionality, respectively. Define

yk̄ :=
((

�xk̄

Āk

)T

,
(
�sk̄

B̄k

)T
)T

, Zk̄ :=
((

xk̄
Ck

)T

,
(
sk̄
Dk

)T
)

P :=
(−NB̄kĀk

I

−ND̄kĀk
0

)

, Q :=
(−NB̄kC̄k

0
−ND̄kC̄k

I.

)
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Then (32) becomes

Pyk̄ =Qzk̄, (33)

Therefore, when k̄ is sufficiently large, the system (33) is solvable for yk.
By applying Gaussian elimination on (33), the linearly dependent rows and
columns of P can be eliminated. Let P̄ be a largest possible non-singular
submatrix of P and ȳk̄ be the corresponding variable. Then we need to
solve

P̄ ȳk̄ = Q̄z̄k̄,

where the rows of Q̄ correspond to the rows of P̄ . Since P̄ is non-singular,
we have

‖ȳk̄‖=‖P̄ −1Q̄z̄k̄‖�‖P̄ −1‖‖Q̄‖‖z̄k̄‖. (34)

Noting that the definitions of Ck̄, Dk̄, zk̄ and the fact that z̄k̄ is a subvector
of zk̄, it is not difficult to see that there exists a constant c7 > 0 such that
‖z̄k̄‖ � c7

√
µk̄. Moreover, ‖P̄ −1‖ is bounded above (see [29,34]). It follows

from (34) that there exists a constant c8 > 0 such that ‖ȳk̄‖ � c8
√

µk̄. Let
the components of yk̄ that were removed during Gaussian elimination be

zero. Then there exists a solution to (33), denoted by
((

�xx̄

Āk

)T
,
(
�sk̄

B̄k

)T
)T

,
such that

{
|�xk̄

i |� c9
√

µk̄ ∀i ∈Ak̄

|�(sk̄)ij |� c9
√

µk̄ ∀(i, j)∈Bk̄,
(35)

where c9 > 0 is a constant. By using Corollary 4.1 and the definitions of
Ak̄, Bk̄ we know that

{
xk̄

i <c6 ∀i ∈Ak̄

(sk̄)ij >c6 ∀(i, j)∈Bk̄.
(36)

Combining (35), (36), and the fact that limk̄→∞ µk̄ = 0, we know

xk̄

Āk
+�xk̄

Āk
>0 and xk̄

B̄k
+�xk̄

B̄k
>0,

for all k̄ being sufficiently large. This indicates that one of the stopping cri-
teria in Step 2 is met for some sufficiently large k̄. This is a contradiction.
Hence H(xk0) = 0 for some k0 � 0.

Similar arguments can be developed for cases (ii) and (iii). Hence Algo-
rithm 3.1 terminates in a finite number of iterations.



VERTICAL LINEAR COMPLEMENTARITY PROBLEMS 387

Following Theorem 3.1, the proposed algorithm finds an exact solution
to VLCP when it terminates.

Case 2: Finite Termination under Singleton Assumption

This time let us assume that the solution set S of (1) is a singleton, say,

S ={(x∗, s∗)}.
We will show that Algorithm 3.1 terminates with the unique solution even
without the strict complementarity assumption.

Using (x∗, s∗), we define four index sets:

A∗ :={i ∈I :x∗
i >0

}
, C∗ :={i ∈I :x∗

i =0
}
,

B∗ :={(i, j)∈J : (s∗)ij >0
}
, D∗ :={(i, j)∈J : (s∗)ij =0

}
. (37)

Again, A∗ and C∗ form a partition of the index set I, and B∗ and D∗ form
a partition of the index set J .

Since S = {(x∗, s∗)}, the result (vi) of Lemma 2.1 assures that there is
constant c10 > 0 such that

‖xk̄ −x∗‖� c10‖H(xk̄)‖.
Following a similar proof of Lemma 4.4, we can show the following result:

LEMMA 4.6. Let N be a vertical block P0 and R0 matrix of type
(m1, . . . ,mn) and the index sets Ak̄,Bk̄,Ck̄,Dk̄ and A∗,B∗,C∗,D∗ be defined by
(18) and (37), respectively. Assume that the solution set of (1) is a singleton.
If H(xk) �= 0 for all k � 0, then Ak̄ = A∗, Bk̄ = B∗, Ck̄ = C∗, and Dk̄ = D∗,
when k̄ becomes sufficiently large.

Furthermore, using a similar proof of Theorem 4.3, we have the following
main theorem:

THEOREM 4.4. Let N be a vertical block P0 and R0 matrix of type
(m1, . . . ,mn). Assume that the solution set of (1) is a singleton. Then Algo-
rithm 3.1 terminates at the unique solution of VLCP in a finite number of
iterations.

5. Numerical results

To test the performance and illustrate the potential of the proposed
method, we have implemented Algorithm 3.1 in MATLAB on a 1000 MHz
Pentium III personal computer running Linux. The eight test problems
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found in Peng and Lin [30] (some of them are from the literature [8,31])
were used in our computational experiment. For easy comparison, the
order of these eight problems is kept the same as in Peng and Lin’s paper.
For all test problems, the vertical block matrices are P0-matrices. Moreover,
Problems 1 to 5 hold the strict complementarity assumption. Problems 6,
7, and 8 were modified so that they may not be strictly complementary, but
they do satisfy the singleton assumption.

The following parameters were chosen for all test problems: σ1 = 0.005,
σ2 = 0.001, α1 = 0.9, α2 = 0.85, γ = 1.0e −3, p = 1.0, µ0 = 0.0005, and
β = ‖H(x0,µ0)‖/µ0 + 1.0e−5. An initial point x0 was set to be a contact
vector (a, . . . , a)T ∈ Rn. We used the criterion ‖H(xk)‖1 � 1.0e−20, where
‖ · ‖1 denotes l1-norm, to stop the algorithm.

Table 1 shows our test results of Algorithm 3.1. The second and the
third columns indicate the dimensionality of the problem and the constant

Table 1. The performance of the proposed method for the test problems in [30]

Problem n a ‖H(x0)‖1 k∗ ‖H(xk∗
)‖1 Termination

1.0 1.0 2 0.0 Step 2 Case (i)
1 2 10.0 10.0 2 0.0 Step 2 Case (i)

−10.0 22.0 3 0.0 Step 2 Case (i)

1.0 9.0 2 0.0 Stopping criterion
2 6 10.0 18.0 3 0.0 Stopping criterion

−10.0 215.0 3 0.0 Stopping criterion

50 5.0 86.5 2 2.2e−16 Step 2 Case (i)
100 5.0 171.5 2 1.1e−15 Step 2 Case (i)

3 200 5.0 341.5 2 3.4e−15 Step 2 Case (i)
100 −5.0 1506 4 1.3e−15 Step 2 Case (i)
200 −5.0 3005.9 4 2.ge−15 Step 2 Case (i)

50 5.0 56.0 2 1.8e−12 Step 2 Case (i)
100 5.0 106.0 2 7.8e−12 Step 2 Case (i)

4 200 5.0 206.0 2 7.3e−11 Step 2 Case (i)
100 −5.0 2080.0 4 0.0 Stopping criterion
200 −5.0 4180.0 4 0.0 Stopping criterion

50 5.0 52.9 3 0.0 Stopping criterion
100 5.0 102.95 4 0.0 Step 2 Case (i)

5 200 5.0 202.97 3 0.0 Stopping criterion
100 −5.0 2095.0 5 0.0 Step 2 Case (i)
200 −5.0 4195.0 5 0.0 Step 2 Case (i)

1.0 10.0 2 0.0 Step 2 Case (i)
6 6 10.0 16.0 3 0.0 Step 2 Case (i)

−10.0 215.0 4 0.0 Step 2 Case (i)

1.0 10.0 2 0.0 Step 2 Case (i)
7 6 10.0 16.0 1 0.0 Stopping criterion

−10.0 215.0 3 0.0 Step 2 Case (i)

1.0 9.0 3 0.0 Step 2 Case (i)
8 6 10.0 18.0 3 0.0 Step 2 Case (i)

−10.0 223.0 2 0.0 Step 2 Case (i)
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used for the initial point, respectively. The l1-norm of H(·) at the initial
point is given in column 4. The k∗ in column 5 denotes the number of iter-
ations required to achieve the result given in column 6. The last column
shows under which conditions each run is terminated.

Several observations can be made here:

1. For every test problem, the proposed method indeed finds a solu-
tion point meeting the desired accuracy in very few iterations. In
particular, the exact solutions have been found in many cases, when
‖H(xk)‖1 = 0. Compared with other known methods as reported in
[8,30,31], our method converges in fewer iterations to achieve the
known results.

2. Problems 6 to 8 were studied by Peng and Lin [30] only. Our results
are always better than theirs. In particular, they were not able to solve
problems 6 and 8 effectively.

3. The last column of the table shows that the algorithm terminates
either by satisfying the condition at Case (i) of Step 2 or by meeting
the stopping criterion. Furthermore, whenever the stopping criterion
is met, the algorithm finds an exact solution. This supports the finite
termination results proved in Section 4.

4. In our experiments, an overflow problem may occur in (7) when the
exponential function exp (−xi/µ) or exp(−(Ni

jx +qi
j )/µ) is computed

with a very large (negative) argument. This potential problem can be
handled effectively by using the following equality:

Hi(x,µ)=−µ ln

⎛

⎝ exp
(

−xi +hi

µ

)

+
mi∑

j=1

exp

(

−(Ni
jx +qi

j )+hi

µ

)⎞

⎠+hi,

where hi �min
{
xi,N

i
1x +qi

1, . . . ,Ni
mi

x +qi
mi

}
.

6. Conclusion

In this paper we have proposed an entropy function based Newton-type
noninterior continuation method for solving vertical linear complementar-
ity problems. We have shown that the proposed method finds an exact solu-
tion in a finite number of iterations under either the strict complementarity
assumption or singleton assumption. This result is more general than those
reported. The computational results that we conducted have confirmed our
analysis and illustrated the potential of the proposed method.



390 SHU-CHERNG FANG ET AL.

References

1. Bertsekas, D.P. (1977), Approximation procedures based on the method of multipliers,
Journal of Optimization Theory and Applications 23, 487–510.

2. Burke, J. and Xu, S. (1998), The global linear convergence of a non-interior path-
following algorithm for linear complementarity problem, Mathematics of Operations
Reseasch 23, 719–734.

3. Chang, P.L. (1980), A minimax approach to nonlinear programming, Ph.D. dissertation,
Department of Mathematics, University of Washington, Seattle, WA.

4. Chen, B. and Chen, X. (2000), A global linear and local quadratic continuation smooth-
ing method for variational inequalities with box constrains, Computational Optimization
and Applications 13, 131–158.

5. Cottle, R.W. and Dantzig, G.B. (1970), A generalization of the linear complementarity
problem, Journal of Combinatorial Theory 8, 79–90.

6. Cottle, R.W., Pang, J.S. and Stone, R.E. (1992), The Linear Complementarity Problem,
Academic Press, Boston, MA.

7. Chen, X. and Ye, Y. (1999), On homotopy-smoothing methods for variational inequal-
ities, SIAM Journal on Control and Optimization 37, 589–616.

8. Ebiefung, A.A. (1995), Nonlinear mappings associated with the generalized linear com-
plementarity problem, Mathematical Programming 69, 255–268.

9. Ebiefung, A.A. and Kostreva, M.M. (1993), The generalized Leontief input–output
model and its application to the choice of the new technology, Annals of Operations
Research 44, 161–172.

10. Engelke, S. and Kanzow, C. (2000) Predictor–corrector smoothing methods for the
solution of linear programming, Preprint, Department of Mathematics, University of
Hamburg, Germany, March, 2000.

11. Fang, S.-C. and Tsao, H.-S.J. (1996), On the entropic perturbation and exponential
penalty methods for linear programming, Journal of Optimization Theory and Applica-
tions 89, 461–466.

12. Fang, S.-C., Rajasekera, J.R. and Tsao, H.-S. J. (1997), Entropy Optimization and Math-
ematical Programming, Kluwer Academic Publishers, Boston/London/Dordrecht, 1997.

13. Fischer, A. and Kanzow, C. (1996), On the finite termination of an iterative method for
linear complementarity problems, Mathematical Programming 74, 279–292.

14. Fujisawa, T. and Kuh, E.S. (1972), Piecewise-linear theory of nonlinear networks, SIAM
Journal on Applied Mathematics 22, 307–328.

15. Goldstein, A.A. (1997), Chebyshev approximation and linear inequalities via exponen-
tials, Report, Department of Mathematics, University of Washington, Seattle, WA.

16. Gowda, M.S. and Sznajder, R. (1994), The generalized order linear complementarity
problem, SIAM Journal of Matrix Analysis and Applications 15, 779–795.

17. Gowda, M.S. and Sznajder, R. (1996), A generalization of the Nash equilibrium theo-
rem on bimatrix games, International Journal of Game Theory 25, 1–12.

18. Hoffman, A.J. (1952), On approximate solutions of systems of linear equalities, Journal
of Research of the National Bureau of Standards 49, 263–265.

19. Huang, Z.H. and Han, J. (2003), Non-interior continuation method for solving the
monotone semidefinite complementarity problem, Applied Mathematics and Optimiza-
tion 47, 195–211.

20. Huang, Z.H., Han, J. and Chen, Z. (2003), A predictor–corrector smoothing Newton algo-
rithm, based on a new smoothing function, for solving the nonlinear complementarity prob-
lem with a P0 function, Journal of Optimization Theory and Applications 117, 39–68.

21. Huang, Z.H., Qi, L. and Sun, D. (2004), Sub-quadratic convergence of a smoothing Newton
algorithm for the P0- and monotone LCP, Mathematical Programming 99, 423–441.



VERTICAL LINEAR COMPLEMENTARITY PROBLEMS 391

22. Huang, Z.H., Zhang, L. and Han, J. (2004), A hybrid smoothing–nonsmooth
Newtontype algorithm yielding an exact solution of the P0-LCP, Journal of Computa-
tional Mathematics, 22, 797–806.

23. Illés, T., Peng, J.M., Roos, C. and Terlaky, T. (2001), A strongly polynomial procedure
yielding a maximally complementarity solution for P∗(κ) linear complementarity prob-
lems, SIAM Journal of Optimization 11, 320–340.

24. Kort, B.W. and Bertsekas, D.P. (1972), A new penalty function for constrained minimi-
zation, Proceedings of the 1972 IEEE Conference on Decision and Control, New Orleans,
Louisiana.

25. Li, X.S. (1991), An aggregate function method for nonlinear programming, Science in
China (Ser. A) 34, 1467–1473.

26. Li, X.S. and Fang, S.-C. (1997), On the entropic regularization method for solving min–max
problems with applications, Mathematical Methods of Operations Research 46, 119–130.

27. Mangasarian, O.L. (1979), Generalized linear complementarity problems as linear
programming, Opemtions Research Verfahren 31, 393–402.

28. Mohan, S.R., Neogy, S.K. and Sridhar, R. (1996), The generalized linear complemen-
tarity problem revisited, Mathematical Programming 74, 197–218.

29. Mehrotra, S. and Ye, Y. (1993), On finding the optimal facet of linear programs, Math-
ematical Programming 62, 497–515.

30. Peng, P.J. and Lin, Z. (1999), A non-interior continuation method for generalized linear
complementarity problems, Mathematical Programming 86, 533–563.

31. Qi, H.D. and Liao, L.Z. (1999), A smoothing Newton method for extended vertical lin-
ear complementarity problems, SIAM Journal on Matrix Analysis and Applications 21,
45–66.

32. Qi, H.D., Liao, L.Z. and Lin, Z. (1999), Regularized smoothing approximations to
vertical nonlinear complementarity problems, Journal of Mathematical Analysis and
Applications 230, 261–276.

33. Qi, L. and Sun, D. (2000), Improving the convergence of non-interior point algorithm
for nonlinear complementarity problems, Mathematics of Computation 69, 283–304.

34. Schrijver, A. (1986), Theory of Linear and Integer Programming, Wiley, New York.
35. Sun, M. (1987), Singular control problems in bounded intervals, Stochastics 21, 303–344.
36. Sun, M. (1989), Monotonicity of Mangasarian’s iterative algorithm for the generalized

linear complementarity problem, Journal of Mathematical Analysis and Applications 144,
473–485.

37. Sun, D., Han, J., and Zhao, Y.B. (1998), On the finite termination of the damped-
Newton algorithm for the linear complementarity problem, Acta Mathematica Applica-
tae Sinica 21, 148–154.

38. Sznajder, R. and Gowda, M.S. (1995), Generalizations of P0 and P -properties, extended
vertical and horizontal LCP’s, Linear Algebra and its Applications 223/224, 695–716.

39. Tseng, P. (1999), Analysis of a non-interior continuation method based on Chen–
Mangasarian smoothing functions for complementarity problems, In: Fukushima, M.
and Qi, L. (eds.), Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smooth-
ing Methods, pp. 381–404, Kluwer Academic Publishers, Boston.

40. Tseng, P. (2000), Error bounds and superlinear convergence analysis of some Newton-
type methods in optimization. In: Di Pillo, G. and Giannessi, F. (eds.), Nonlinear Opti-
mization and Related Topics, pp. 445–462, Kluwer Academic Publishers, Boston.

41. Tseng, P. and Bertsekas, D.P. (1993), On the convergence of the exponential multiplier
method for convex programming, Mathematical Programming 60, 1–19.

42. Ye, Y. (1992), On the finite convergence of interior-point algorithms for linear program-
ming, Mathematical Programming 57, 325–335.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


